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ABSTRACT

This study deals with the analysis of the cure rate estimation based on the Bounded Cumulative Hazard 
(BCH) model using interval censored data, given that the exact distribution of the data set is unknown.  
Thus, the non-parametric estimation methods are employed by means of the EM algorithm.  The Turnbull 
and Kaplan Meier estimators were proposed to estimate the survival function, even though the Kaplan 
Meier estimator faces some restrictions in term of interval survival data.  A comparison of the cure rate 
estimation based on the two estimators was done through a simulation study.

Keywords: BCH model, interval censored data, cure fraction, EM algorithm, Turnbull estimator, 
Kaplan Meier estimator

INTRODUCTION

Cancer is one of the major chronic diseases 
which cause a notable amount of health 
administrative costs.  Prognosis and possible 
cure from cancer are important measures of 
lifetimes which can be assessed by analyzing 
the survival of cancer patients.  In survival 
data from cancer studies, the term cure may 
refer to a substance or procedure that changes 
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the lifestyle, or may refer to the state of 
being healed or cured.  The proportion of the 
individuals with a disease that is cured by a 
given treatment is called the cure fraction.

Survival models incorporating the cure 
fraction in the analysis known as the cure rate 
models are being widely used in analyzing 
data from cancer clinical trials (Zeng et 
al., 2006).  These models were basically 
developed to estimate the proportion of the 
patients who are cured as well as the odds 
of survival of the patients not cured up to a 
certain point of time (Andreas et al., 2006).

The first cure rate model was published 
by Boag in 1949 and this was later developed 
by Berkson and Gage in 1952.  In this model, 
the probability of survival at any given time 



Bader Ahmad Aljawadi, Mohd Rizam Abu Bakar and Noor Akma

244 Pertanika J. Sci. & Technol. 20 (2): 243 - 255 (2012)

t equals to the proportion of those who are cured (π) plus those who are not cured (1 – π) but 
have not died.  This model is known as the mixture cure rate model which can be defined 
mathematically, as follows:

S(t) = π + (1 – π) S *(t)	 (1)

where S(t) and S *(t) are the survival functions for the entire population and the uncured pa-
tients, respectively.

The mixture model plays an important role in reliability and survival analysis, and it is 
becoming increasingly popular in analyzing data from clinical trials.  In fact, the model has 
been extensively discussed by several authors including Farewell (1986), Gamel et al. (1990), 
Cantor and Shuster (1992), Kuk and Chen (1992), Peng and Dear (2000), Peng and Carreier 
(2002), Binbing et al. (2004), Abu Bakar et al. (2009), and in many more recent studies which 
have been conducted based on this model, as in Kim et al. (2009) who proposed a new mixture 
model via latent cure rate markers for survival data with a cure fraction.  Seppa et al. (2010) 
applied a mixture cure fraction model with random effects to cause-specific survival data of 
female breast cancer patients.  The researchers used two sets of random effects to capture the 
regional variation in the cure fraction and in the survival of the uncured patients, respectively.  
Furthermore, Castro et al. (2010) described an application of the mixture and bounded 
cumulative hazard models for location, scale, and shape (GAMLSS) framework to the fitting of 
long-term survival models.  On the other hand, Peng and Taylor (2011) considered the mixture 
cure model with random effects and proposed several estimation methods based on Gaussian 
quadrature, rejection sampling, and importance sampling to obtain the maximum likelihood 
estimates of the model for clustered survival data with a cure fraction.  Meanwhile, Xiang et 
al. (2011) proposed a mixture cure modelling procedure for analyzing clustered and interval 
censored survival time data by incorporating random effects in both the logistic regression 
and PH regression components.

Although this model appears to be attractive and is widely used in survival analysis, Chen 
et al. (1999) stated that it has some drawbacks which include the following:

●● When covariates are involved in the analysis, the mixture model does not have a proportional 
hazard structure.

●● The mixture model yields improper posterior distributions for many types of non-
informative improper priors when covariates are included through the parameter π via a 
standard regression model.

●● This model does not appear to describe the underlying biological process generating the 
failure time, at least in the context of cancer relapse.

However, Chen et al. (1999) proposed the bounded cumulative hazard (BCH) model 
developed by Yakovlev et al. (1993) as a viable alternative to the mixture model.  This model 
can be derived based on the assumption that for a group of cancer patients entering a clinical 
trial and after the initial treatment, a number of cancer cells left active and may grow rapidly 
to produce a detectable cancer mass later on (i.e. cancer relapse).  The number of cancer 
cells denoted by N is assumed to follow Bernoulli, negative binomial or Poisson distribution, 
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whereby considering a Bernoulli distribution is related to the classical mixture model specified 
in equation (1), where π = P (N = 0), while considering a negative binomial distribution with 
parameters α and θ, at the same time, where θ = E(N) and α are real numbers.  For θ > 0 and 
αθ > –1, the survival function is defined as follows (Rodrigues et al., 2009):

S(t) = [1 + αθF(t)]–1/α

where F(t) is the cumulative distribution function.
When N is assumed to follow Poisson distribution with mean θ which is considered as 

the most attractive assumption since it provides more flexible model (Rodrigues et al., 2009).  
Then, the survival function for the BCH model under this assumption can be obtained by:

S(t) = exp(– θF(t))	 (2)

where F(t) is the cumulative distribution function such that F(t) = 1 – S(t).  See Chen et al. 
(1999) and Aljawadi et al. (2011).

Based on the BCH model defined in (2), the cure fraction (π) can therefore be obtained 
using:
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In the survival data analysis, the lifetime t can be considered as an exact or censored 

lifetime; however, other cases often occur in cancer studies, where the follow-up of the patients 
is a pre-fixed time period or visited periodically for a fixed number of times.  In this article, the 
lifetime of the individuals is only known to fall in an interval, such that , , , ,t L R i n1i i i f! =^ @ , 
where Li and Ri are the left and right endpoints of the observed intervals, respectively.

The cure rate models are said to be a parametric or semi-parametric models.  In the 
parametric models, a standard probability distributions such as exponential, weibull, Gompertz 
and generalized F can be employed.  Nonetheless, the main limitation of the parametric cure 
models is that it is sometimes hard to find a distribution flexible enough to fit the observed 
data.  Therefore, the non-parametric techniques are considered to be more attractive under the 
violation of the parametric assumptions.

In the following sections, however, the non-parametric techniques are employed to 
estimate the survival function, based on Turnbull and Kaplan Meier estimators, and followed 
on to compare the estimation of the cure fraction via a simulation study considering the two 
non-parametric estimators.

MATERIALS AND METHODS

Turnbull Estimator

In case of right censored data, one can use the Kaplan-Meier estimator to obtain the survival 
function.  However, with interval censored data, this particular estimator is not a suitable one, 
and it is Turnbull who formulated an algorithm that works on the principle of EM algorithm 
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based on a sample of observed intervals [Li, Ri], i = 1, ..., n, which contains the independent 
random variables t1, ..., tn.

For this algorithm, equivalence intervals such as J1 = (q1, p1], J2 = (q2, p2], ..., 
Jm = (qm, pm] must be extracted to determine the jumps (s1, s2, ..., sm) of the cumulative 
distribution function and hence the survival function.  To find the equivalence intervals, 
consider all the intervals [Li, Ri] for i = 1, ..., n, and order the 2n endpoints in ascending order, 
and each end point “L” that is then immediately followed by the end point “R” which is an 
equivalence interval.

Let 1 , ,ij q p L Rj j i ia = 36 6@ @" , , i = 1, ..., n, j = 1, ..., m,be the indicator variable of whether or not [qj, 
pj]lies within [Li, Ri].  Then, the probability that ti falls in the [qj, pj] given vector of the jumps 
s = (s1, ..., sm)T is given by:
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Since the survival function is constant outside the intervals [qj, pj], the proportion of the 
observations in [qj, pj] is given by:
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Thus, the Turnbull estimator of the survival function can be defined as follows:

:
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See Klein and Moeschberger (2003).

Estimation of the Entire Survival Function

Since the survival function is not observed in the equivalence intervals and hence, the 
survival function amongst the interval [Li, Ri] which contains at least one of the equivalent 
classes is unknown if ,t q pi j j! 6 @.  Furthermore, the details about the true lifetime are not 
available, and the only thing that is known is that it belongs to an observed interval.  Then, 
the lifetime ti can be generated randomly from the interval [Li, Ri] when both endpoints are 
observed, while in the case of right censoring where the right endpoint Ri is not observed, 
it is possible to substitute this endpoint by the last visit time and to do the generation.   
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In case the generated life times fall in the equivalence intervals, the survival function can then 
be defined as follows:

●● Generating a sufficient number W of sequential values from the equivalence interval 
(qj, pj), such that TjW = (Tj1, ..., TjW) and qj < Tj1 < Tj2.  1 ≤ j ≤ m.

●● Generating W sequential values between the corresponding values of the survival 
function at the endpoints of the equivalence interval (qj, pj), such that SjW = (Sj1, ..., SjW), 
and Sj1 > Sj2...> SjW, where limS S tji t qj= " -

t^ h, and limS S tjw t pj= " +
t^ h.  Note that Sj1 = 1 if qj = 

0, and SjW = 0 if pj = 0 for all j = 1, ..., m.

Then, the survival function can be defined as follows:

:

:
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k = 1, ..., W,	 i = 1, ..., n	 j = 1, ..., m

Kaplan-Meier Estimator

The standard non-parametric estimator of the survival function is the Kaplan-Meier (KM) 
estimator, which is also known as the product limit estimator.  This estimator is defined as 
follows:
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where ti t t ti i 1# # + , di represents the number of failures at time t such that J1 = (q1, p1], J2 = 
(q2, p2], ... , Jm = (qm, pm], and ni indicates the number of individuals who have not experienced 
the interested event, and have also not been censored by time t.  From equation (5), it is seen 
that S t 1=t^ h  when t is less than the first failure time, i.e. t < ti.

The Kaplan-Meier estimator estimates the jumps of the survival function at the observed 
times.  The jumps on the survival curve are dependent upon the number of events observed at 
each event time, and also on the pattern of the censored observations before the event time.

In the case of interval data, using the midpoint of each interval to represent the exact 
survival time is a common practice amongst the analysts, and then applying the Kaplan-Meier 
method will yield the estimated survival function.  If the right endpoints of some intervals 
are not specified, i.e. right censored, it is then possible to use the maximum value of the visit 
times to represent the right endpoint for that interval.  However, this procedure may produce 
invalid inference.  Due to the lack of efficient statistical methodology and available software, 
the Kaplan Meier estimator can be implemented.

Midpoint imputation is only applicable when the time periods between the consecutive 
visits are short (Law & Brookmeyer, 1992).  Thus, when the width of the interval increases, 
we may run into problems.  Furthermore, the standard error of the estimator is underestimated 
since the midpoint imputation assumes that the failure times are exactly known when in fact 
they are not, (Kim, 2003).
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RESULTS AND DISCUSSION

Let the censoring and cure indicators for interval censored data be as follows:
:

:

:
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0
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Then, the log likelihood function can be obtained by:
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where S*
i  is the survival function of the censored-uncured patients which might be evaluated 

using the Turnbull or Kaplan Meier estimators, and f*
i  is the probability density function of 

the uncensored individuals.
One of the most attractive features of the BCH model is that it can be written as a mixture 

model, where the survival function can be obtained using:
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Comparing this formula with the mixture model in Equation (1), the survival function of the 
uncured patients S*

i  can then be represented by:
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where S(ti) is the survival function for the ith censored individual.
Furthermore, the probability density function f*

i  can be estimated using the jumps of the 
survival function which can be obtained by:
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where F(Ri) and F(Li) are the cumulative distribution functions at the endpoints of the observed 
interval.  Therefore, the log likelihood function can be re-written as follows:
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Maximizing Lc is subjected to the condition M 1i
i

n

1
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=
/ .  Let q be a non-negative slack 

variable i.e. M q 1
i
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1
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=
/ .  By adding the Lagrange multiplier λ, the log likelihood function 

can then be re-written as follows:
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The solution of the following equations is the desired estimates of the parameters:
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which can be simplified as follows:
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Similarly, , , ,M
L i n0 1

i

c

2
2

f= =  implies:

c M n1 0i i
ii

n

1
a m- =

=
/ 	 (12)

L 0c

2
2
m

=  also implies:

M q 1 0i
i

n

1
+ - =

=
/ 	 (13)

q
L 0c

2
2

=
 
implies:

0m = 	 (14)

The solution of equation (11) is our desired estimate of θ, but ci is partially missing and so the 
EM algorithm is necessary.

The EM Algorithm

Suppose that the data set is given in the form ([Li,Ri], αi), i = 1, 2, ..., n, where [Li,Ri]  denotes 
the observed interval that includes the ith patient lifetime, and αi is the censoring indicator.  The 
cure indicator ci is partially missing and this will be handled in the EM algorithm.
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However, for the m uncensored individuals αi and ci, j = 1, ..., m, are observed and both 
are equal to 1, while for i = m + 1, αi is observed and equals to 0 but ci is not observed and it 
might be 1 or 0.  Thus, in the EM algorithm, the E-step calculates the expectation of (8) given 
the observed data set.  The expected value of the log likelihood function can be represented by:

,E L LE a c E Lc c j j c i1 2 a= +6 6 6@ @ @

The expected value of the log likelihood function basically depends on E Lc i2 a6 @ which 
can be defined as follows:
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Peng and Carriere (2002) defined gi as the expected value of the ith patient to be uncured 
conditional on the current estimates of αi and the survival function of uncured patients 
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i , such that:

g e e S
e S

1
1

1
*

*

i i i

i

i

a a= + -
+ -

-
i i

i

- -

-

^ h 6 6
6> @ @

@ H

For simplicity, let pi = E(1 – ci) = 1 – g, i = m + 1, which indicates the expected value of 
the ith patient to be cured such that for censored individuals:
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Using these notations, the sufficient statistics can then be re-written as follows:
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In the light of this equation (11), it can be re-written as follows:
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However, for some initial values of (θ t) solve for e1, e2 and pi then θ t+1 is the numerical 
solution of equation (17) with respect to θ.  Repeat until stopping condition such as θ t+1 + θ t, 
ε is small positive value (e.g. 0.0001).

Simulation Study

In simulation studies based on survival analysis, many common distributions can be used 
to generate the failure time data sets, where the most common distributions that might be 
employed in such studies are the exponential and Weibull distribution since they fit the data very 
well.  However, in this simulation and to control the data generation process, the exponential 
distribution with various values of the scale parameter λ has been considered, where λ can be 
replaced by the values 0.5, 1, 1.5 and 2 respectively which imply various censoring rates for 
the generated data sets.  For each assigned value of λ, a 100 data sets were generated such that 
each data set comprised 100 observations.  The steps used for data generation are as follows 
(Goulin et al., 2008):

(a)	 Generate the true survival time t from an exponential distribution using the proposed 
values of the scale parameter.

(b)	 Generate a vector V for the clinic visits, assuming that there are 20 clinic visits, in case 
of exponential distribution, the first visit v1 was generated from U(0,0.115), and then the 
next visit v2 was generated from U(v1,v1 + 0.115).  The other visit times were generated in 
the same manner.  A uniform distribution is considered in such case to regulate the times 
of the clinic visits and hence gain short and equivalent lengths of the intervals.

(c)	 Generate a 100 × 2 empty matrix named “bound” for each data set.  The entries of bound 
matrix are the intervals endpoints for each individual after comparing the true survival 
time with the 20 visit times.  In case of right censoring the right end point is replaced by 
“Inf”.  The formula used for end points determination is:

For i = 1, ..., 100, j = 1, .., 20

,

0 :

:

:

bound i
if t i V

V j if V j t i V j
V if t i V

1
1

1
20 20

1

1 1

2

= +6
6 6

6 6 6 6
6 6 6

@
@ @

@ @ @ @
@ @ @

*

,

:

:

:

bound i
t i V

V if t i V
V j if V j t i V j

Inf
2

20

1 1
1 1

1

1 1

2

= + +6
6 6 6

6 6 6 6
6 6

@
@ @ @
@ @ @ @

@ @
*

(d)	 Generate a 100 × 2 empty matrix named “status” based on the “bound” matrix and the 
“status” matrix can then be defined as follows:

status ,i 1 /6 @  censoring indicator : ,

:

if bound i
if otherwise

Inf0 2
1ia =

=6 @
*
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status ,i 1 /6 @  cured indicator :

:
c

if
if otherwise

0 0
1i

ia
=

=
'

Note: We assumed that all right censored individuals are cured as a special case.

The Turnbull and Kaplan Meier procedures are employed for each generated data set to 
estimate the survival function, and hence estimate the cure fraction.  In this simulation, the 
bias of the cure fraction and also the relative efficiency (RE) based on the two non-parametric 
estimators are considered in such that:

bias Er r= - t^ h	 (18)

and

RE MSE KM
MSE Turnbull

=
^

^
h
h 	 (19)

Where, rt  is the maximum likelihood estimator for π, and the mean square error 
MSE biase Var2

r r= +t t^^ ^hh h.
A small bias indicates that the estimator is closer to the true value on average and hence 

more accurate.  While RE being less than one indicates that the Turnbull estimator is the viable 
estimator that may be employed to estimate the cure fraction using interval censored data.

Table 1 shows the results of the cure rate estimation based on the two proposed scenarios, 
where the estimated measures (i.e. Bias, MSE and RE) represent the average of these measures 
for the whole data sets that have equivalent censoring rate.  All the relative efficiency values 
are less than one, which indicates that the Turnbull estimator in the case of interval censored 
data and whatever the censoring rate is more efficient than the Kaplan Meier estimator when 
the midpoint of the observed interval is considered.  The bias values obtained from both the 

Fig.1: Censoring rates versus bias for Kaplan Meier and Turnbull Estimators
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estimators yield the same indication, and it is noticed that the efficiency of both the estimators 
declines when the censoring rate goes up, as shown in Fig.1.

CONCLUSION

In this research, two non-parametric estimation methods of the cure fraction were investigated 
based on the bounded cumulative hazard model using interval censored data.  Both the Turnbull 
and Kaplan Meir estimators were considered, whereby in the case of Kaplan Meir estimator, the 
midpoint of the intervals could be adopted to represent the exact failure time.  The estimation 
methods were combinations of the straightforward maximum likelihood estimation and the 
EM algorithm.  Hence, the estimating equations were solved numerically since no explicit 
solutions could be found.

Based on the simulation results and the obtained RE values, however, it was concluded 
that the Turnbull estimator provides more efficient estimates for the cure fraction using interval 

Table 1: Simulation results based on the various values of λ

Run
Censoring 

Rate
True Cure 
Rate (R)

Turnbull Estimator Kaplan Meier estimator
Relative 

EfficiencyEstimated  
Cure Rate (E)

Bias  
(R-E)

Estimated  
Cure Rate (E)

Bias  
(R-E)

λ = 2

1 6% 6% 5% 1% 2% 4% 0.988
2 9% 9% 8% 1% 3% 6% 0.946
3 10% 10% 9% 1% 3% 7% 0.900
4 13% 13% 12% 1% 6% 7% 0.900
5 14% 14% 13% 1% 6% 8% 0.853

λ = 1.5

6 15% 15% 13% 2% 7% 8% 0.864
7 16% 16% 14% 2% 8% 8% 0.864
8 18% 18% 16% 2% 9% 9% 0.816
9 22% 22% 19% 3% 13% 9% 0.832
10 23% 23% 20% 3% 14% 9% 0.832

λ = 1

11 32% 32% 28% 4% 23% 9% 0.855
12 33% 33% 29% 4% 24% 9% 0.855
13 38% 38% 33% 5% 28% 10% 0.833
14 42% 42% 36% 6% 31% 11% 0.814
15 43% 43% 37% 6% 31% 12% 0.764

λ = 0.5

16 51% 51% 44% 7% 38% 13% 0.748
17 54% 54% 47% 7% 40% 14% 0.700
18 55% 55% 48% 7% 41% 14% 0.700
19 59% 59% 50% 9% 42% 17% 0.636
20 62% 62% 52% 10% 43% 19% 0.591
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censored data compared to the Kaplan Meir estimator.  Therefore, based on these results, the 
analysts who have considered the Kaplan Meier estimator in case of interval censored data 
should not be too confident with their results.  Thus, the Turnbull estimator is recommended 
to be used for the cure rate estimation rather than the Kaplan Meier estimator.
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